Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems
نویسندگان
چکیده
OBJECTIVES The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nananomaterials (GFNs) in alternative in vitro and in vivo toxicity testing models. METHODS The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [NH2]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. RESULTS In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine>NH2>COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. CONCLUSIONS The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.
منابع مشابه
Analytical methods for nanomaterial characterization
In recent years, it has become evident that it is necessary to systematically and accurately define particle characteristics in order to understand the potential toxicity of nanoparticles to biological systems. The properties that need to be emphasized are size, shape, dispersion, doping, aggregation, functionalization, physical and chemical properties, surface area, and surface chemistry. Rout...
متن کاملAnalytical methods for nanomaterial characterization
In recent years, it has become evident that it is necessary to systematically and accurately define particle characteristics in order to understand the potential toxicity of nanoparticles to biological systems. The properties that need to be emphasized are size, shape, dispersion, doping, aggregation, functionalization, physical and chemical properties, surface area, and surface chemistry. Rout...
متن کاملToxicity of Nanoparticles and an Overview of Current Experimental Models
Nanotechnology is a rapidly growing field having potential applications in many areas. Nanoparticles (NPs) have been studied for cell toxicity, immunotoxicity, and genotoxicity. Tetrazolium-based assays such as MTT, MTS, and WST-1 are used to determine cell viability. Cell inflammatory response induced by NPs is checked by measuring inflammatory biomarkers, such as IL-8, IL-6, and tumor necrosi...
متن کاملIn -vivo andIn -vitro antioxidant activity of Troxerutin on Nickel induced toxicity in Experimental Rats
The aim of the present study was to evaluate the effect of troxerutin (TXN) on Nickel (Ni) toxicity by using rats and in vitro model. Ni toxicity induced in male albino wistar rats (20 mg/kg body weight (b.w) was administered orally for 20 days). TXN was administered orally (100 mg/kg (b.w) for 20 days with administration of Ni. The toxic effect of Ni and the action of TXN was measure by determ...
متن کاملIn -vivo andIn -vitro antioxidant activity of Troxerutin on Nickel induced toxicity in Experimental Rats
The aim of the present study was to evaluate the effect of troxerutin (TXN) on Nickel (Ni) toxicity by using rats and in vitro model. Ni toxicity induced in male albino wistar rats (20 mg/kg body weight (b.w) was administered orally for 20 days). TXN was administered orally (100 mg/kg (b.w) for 20 days with administration of Ni. The toxic effect of Ni and the action of TXN was measure by determ...
متن کامل